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Rapid Note

Damage-spreading in the Bak-Sneppen model without noise
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Abstract. We study the behavior under perturbations in the, recently introduced, Bak-Sneppen model
with deterministic updating. We focus our attention on the damage-spreading features and show that the
value of the growth exponent for the distance, α = 0.32, coincides with that of the random updating Bak-
Sneppen model. Moreover, we generalize this analysis by considering a broader set of initial perturbations
for which the value of α is preserved.

PACS. 05.20.-y Statistical mechanics – 05.45.+b Theory and models of chaotic systems –
05.70.Ln Nonequilibrium thermodynamics, irreversible processes

A great deal of evidence has been put forward in re-
cent years for the appearance of criticality in nature: a
wide variety of phenomena, from biological evolution [1]
to earthquakes [2], from surface growth [3] to fluid dis-
placement in porous media [4], exhibit scale invariance
in both space and time. Scale invariance means that the
correlation length in these systems is infinite and conse-
quently, a small (local) perturbation can produce a global
(maybe even drastic) effect. This possibility leads natu-
rally to the study of the sensitivity to perturbations in
critical systems.

To study the propagation of local perturbations (dam-
age spreading) one can borrow a technique from dynamical
systems theory. Let us consider, for instance, two copies
of the same dynamical system, with slightly different ini-
tial conditions. By following the dynamics of both copies
and studying the evolution in time of the “distance” D(t)
between them, it is possible to quantify the effect of the
initial perturbation. Indeed, assuming that the distance
D(t) grows exponentially, and defining the Lyapunov ex-
ponent λ via

D(t) = D0 exp(λ t), (1)

three different behaviors can be distinguished, correspond-
ing to λ being either positive, negative or zero. The case
λ > 0 corresponds to the so-called chaotic systems, where
the extremely high sensibility to initial conditions leads to
exponentially diverging trajectories. The case λ < 0, in-
stead, characterizes those systems in which the dynamics
has an attractor and any initial perturbation is “washed
out” with exponential rapidity.
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The boundary case, λ = 0, admits, in turn, a whole
class of functions D(t), namely

D(t) ∼ tα (2)

where α is some exponent, characteristic of the system. In
particular, α > 0 corresponds to weak sensitivity to initial
conditions while α < 0 corresponds to weak insensitivity
to initial conditions (as an example, the reader is referred
to Refs. [5], where this analysis is performed for the logistic
map at its critical point). In [5], the behavior described
by equation (2) has been related to the non-extensivity of
the entropy proposed in [7]. Indeed, the exponent α can
be shown to be α = 1/1− q where q is the extensivity
parameter (q = 1 corresponding to the extensive case).

Recently [6], this analysis was performed on the Bak-
Sneppen (BS) model [1]. Originally proposed to describe
ecological evolution, this model has been paid a great deal
of attention due to its simplicity and the fact that it ex-
hibits self-organized criticality [8]. Its critical properties
allow us to describe its behavior under perturbations via
equation (2), with

α = 0.32 . (3)

In a recent paper [9], the results presented in [6] were
explained by relating the BS model to a simpler model.
The purpose of this paper is twofold. First of all, we an-
alyze, with the methods introduced in [6,9], the recently
introduced deterministic BS model [10], to show that the
exponent α is constant (as it should be) within the BS uni-
versality class. In the second part of the paper, we extend
the analysis of [6,9] to show that the nature of the ini-
tial perturbation is actually irrelevant. Indeed, the same
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growth exponent for the distance is obtained for a whole
class of perturbations.

In its simplest version, the BS model describes an
ecosystem as a collection ofN species on a one dimensional
lattice. To each species corresponds a fitness described by
a number f between 0 and 1. For simplicity, one consid-
ers periodic boundary conditions. The initial state of the
system is defined by assigning to each site j a random fit-
ness f j0 chosen from a uniform distribution. The dynamics
proceeds in three basic steps.

1. Find the site with the absolute minimum fitness on the
lattice (the active site) and its two nearest neighbors.

2. Update the values of their fitnesses by assigning to
them new random numbers from a uniform distribu-
tion.

3. Return to step 1.

After an initial transient that will be of no interest to
us here, a non-trivial critical state is reached. This criti-
cal state, characterized by its statistical properties, can be
understood as the fluctuating balance between two com-
peting “forces”. Indeed, while the random assignation of
the values, together with the coupling, acts as an entropic
disorder, the choice of the minimum acts as an ordering
force. As a result of this competition, at the stationary
state the majority of the f j have values above a certain
threshold fc. Only a few will be below fc, namely those
belonging to the running avalanche (see [1,10,11] for a
detailed discussion).

Through the use of different maps (chaotic as well as
non-chaotic), it was shown [10] that the random updating
is not a necessary requirement to have SOC. Moreover,
as long as the updating rule is chaotic the system does
not change the universality class, i.e. all the exponents
are the same as in the case of random updating. This
means that the system is able to self-organize at a higher
level: it takes into account the temporal correlation (or
the average time spent in every site) by increasing the
threshold, so as to have the same statistical properties
[10]. As a consequence, all equations and relations derived
for the original BS model are still valid for all the cases
with chaotic updating. The stationary distribution of the
fitnesses, on the other hand, follows a different pattern.
Indeed, the position of the threshold as well as the exact
shape of the stationary distribution depends on the actual
form of the updating rule.

As mentioned above, to study the behavior under per-
turbations one produces two identical copies B1 and B2

of the system in the critical state, and finds the minimum
(the active site). Then, a slight perturbation is introduced
in B2 (as explained later on) and the evolution of the
Hamming distance

D(t) =
1

N

N∑
j=1

|f1
j − f

2
j | (4)

is followed in time. Since this quantity has strong fluctu-
ations, we will consider the average 〈D(t)〉, over realiza-
tions. To calculate the value of 〈D(1)〉 one needs to specify

the nature of the perturbation. One option is to swap the
position of the minimum in B2 with any site taken at ran-
dom. With this prescription, at t = 1, the average (initial)
distance 〈D(1)〉 can be obtained from equation (4),

〈D(1)〉 =
2

N

∫ 1

0

df1df2η1(f1)η2(f2)|f1 − f2|, (5)

where ηi is the distribution function (at t = 1) for the
variable f i ∈ Bi. Applying a similar procedure, one can
study the growth of the distance for 1 � t � N . In fact,
it is enough to observe that

〈D(t)〉 = 〈D(1)〉 n̄cov(t) , (6)

where n̄cov(t) is the averaged number of different sites cov-
ered in the two copies of the system at time t. As ex-
plained in [9], n̄cov(t) may depend on the internal corre-
lation of the system and on the correlations between the
two copies. In the 1D Bak-Sneppen model, the growth
rate cannot give an exponent α > 1 and stops at a certain
time τ ∼ Nz at which a crossover to a saturation regime
appears. Clearly, this is due to the fact that after τ time-
steps each site of the lattice has been covered at least once.
For t � τ , almost all the lattice sites have been covered
and the two strings are made of the same random num-
bers placed in different position along the lattice. Thus,
the distance reaches a plateau, independent on the size N
of the system, given by

Dasym = 〈D(t→∞)〉

=

∫ 1

0

df1df2ρ1(f1)ρ2(f2) |f1 − f2| , (7)

where ρi is the normalized distribution function (at
t =∞) for the variable f i ∈ Bi [13].

In the model with random updating, the initial dis-
tance can be computed using equation (5) and the fact
that both distributions are (roughly) given by

η1(f) =

(
3−

9

2
f

)
Θ

(
2

3
− f

)
(8)

η2(f) = 3Θ

(
f −

2

3

)
, (9)

for the distribution of the active sites and of the sites
above threshold respectively (the threshold has been put
equal to 2/3 in first approximation and Θ is the step func-
tion). Inserting equations (8, 9) in equation (5) we obtain
〈D(1)〉 ∼ 1.2/N . The saturation value is instead obtained
from equation (7) with ρ1 = ρ2 = η2, where η2 comes from
equation (9), and reads Dasym = 〈D(t → ∞)〉 ∼ 0.11.
Therefore, the saturation value does not depend on the
size of the system while the initial distance does. Thus,
the normalized distance 〈D(t)〉/〈D(1)〉 reaches a plateau
that must scale with N , as confirmed by numerical simu-
lations [9,12]. When one considers the chaotic updating,
equations (5, 7) are still valid. The only difference is that
one needs to find the stationary distributions that corre-
spond to the actual map. For instance, for the tent map
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Table 1. Values of α for the different updating rules and per-
turbation prescriptions. The system size is N = 2 × 103. All
the values are in good agreement with the value computed in
[10], by using the flipping perturbation only.

flipping random perturbation
random updating α = 0.33(2) α = 0.33(2)
logistic updating α = 0.31(2) α = 0.29(2)
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Fig. 1. The log10-log10 plot of D(t) for the BS model with flip-
ping, with random updating and deterministic updating with
logistic map, for different system sizes. The value of the plateau
actually depends on the updating rule, but it does not depend
on the system size. Inset: a plot of the plateau of ND(t) versus
N fits very well with a linear scaling, showing that the plateau
of the Hamming distance D(t) is size independent.

as well as for the Bernoulli map the distribution coincides
with that of the random updating (except for the value of
the threshold in the Bernoulli case) [10]. As an example,
we substitute the random updating with the logistic map

fi(t+ 1) = bfi(t)(1− fi(t)) , (10)

where i runs over the minimum and its nearest neigh-
bors and b is a parameter (that we set to the value 4
which is at the threshold of the chaotic phase). Inserting
the estimated distributions obtained in [10] one obtains
as first approximation Dasym ∼ 0.087 and the same expo-
nent α as in the random updating (see Tab. 1). In Figure 1
one can see the evolution of the distance for the case of
a Bak-Sneppen model with random and logistic updat-
ing, using the perturbation defined in [6] (flipping of the
minimum fitness with another fitness chosen at random).
Simulations with other chaotic maps give the same expo-
nents too: this reflects the observed fact that chaotic maps
do not change the universality class of the model [10]. In
the inset we show the scaling of NDasym(N) versus N for
both random and logistic updating. A linear fit gives as
estimation of the plateau Dasym = 0.112(5) for random
updating and Dasym = 0.088(5) for logistic updating, in
good agreement with our analytic estimate.

One point remains, however, that needs to be studied.
The definition of the initial perturbation in the replica
in [6] is too restrictive. In fact, by considering as initial
perturbation

f̃i = fi + εgi , (11)

where ε is a small positive number, we can take several
choices for gi without altering the exponent α. We consid-
ered four different implementations of gi:

(a) gi = ψ(t) where ψ(t) is a random number between 0
and 1;

(b) gi = ψ(t) where ψ(t) is a random number between
−1/2 and 1/2;

(c) gi = ψ(t) for i corresponding to the minimum and zero
otherwise;

(d) gi = constant = 1 for all sites.

This kind of perturbation allows us to tune the initial
mean distance D(t), to any arbitrarily small value depend-
ing on ε in equation (11) (contrary on the flipping intro-
duced in [6], which gives a fixed, size dependent, mean
initial distance). In case (d), for example, (which is the
case we will use in the analysis below) the initial distance
is D(1) = ε, independent on N , and the plateau will be in-
dependent on N too. This characteristic of the global per-
turbation is useful to explore some properties of the model
with deterministic updating and is more in line with the
standard techniques of damage spreading problems.

We have performed the analysis with the prescription
(11) also in the case in which the model has a deterministic
microscopic rule, like an updating with the logistic map.
In this case, the numbers in each replica will not be the
same since the map will be applied on different numbers.
In Figure 2 we show the behavior of D(t) for random and
logistic updating, where we used perturbation (11) with
the implementation (d). The exponent does not change:
in both cases a value of α around the value 0.32 found
in [6] is obtained (see Tab. 1). The plateau of ND(t) (we
computed ND(t) to reduce statistical fluctuations) for the
case of global perturbation, scales linearly with the sys-
tem size N , as shown in the inset of Figure 2, with a
slope a = Dasym = 0.114(5) and a = Dasym = 0.089(5)
respectively for random updating and logistic updating.
The good agreement with the rough analytic estimate ob-
tained above and with numerical results for the flipping
show that the value of the plateau, too, does not depend
on the kind of perturbation applied. Consequently, the
distance D(t) has a plateau Dasym independent on the
size, as it happens with the flipping. These results do not
change if we use the implementations (a), (b), (c) of the
perturbation (11) [12].

The case of the logistic map with perturbation (11)
is particularly interesting from a different point of view.
Since the map is chaotic, one could expect that on small
scale distances (D(t) � 1/N) the chaoticity of the maps
dominates and the distance of the two copies grows
exponentially. For bigger distances instead, the dynamics
is dominated by the damage spreading (and thus the
critical properties of the BS model) and the distance
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Fig. 2. The log10-log10 plot of D(t) for the BS model with the
perturbation (11), implementation (d), with random updat-
ing and deterministic updating with logistic map, for different
system sizes. The value of the plateau actually depends on
the updating rule, as in the flipping case. Inset: a plot of the
plateau of ND(t) versus N gives the same findings of the case
of flipping.
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Fig. 3. The linear-log10 plot of D(t) for the BS model with
perturbation (11), implementation (d), and updating with a
logistic map with parameter b = 4, for different system sizes
and mean initial distances ε.

grows as a power law. This is exactly what we find numer-
ically. In Figure 3 we show some numerical simulations
of the BS model with deterministic updating with the
logistic map (with parameter value 4) and random per-
turbation, for different system sizes and initial distances.

The distance D(t) has an initial exponentially growing
phase with a Lyapunov exponent λ = 0.49(1). This Lya-
punov exponent is smaller than the Lyapunov exponent
of a single logistic map with b = 4, which actually is
log 2 = 0.693147... Indeed, the microscopic dynamical rule
of the system changes the values of the minimum fitness
and its nearest neighbors, and the Lyapunov exponent
we measure arises from the interaction between the three
maps applied to the three different numbers.

Summarizing, the behavior under perturbation of the
BS model with deterministic updating resembles very
much that of the original BS model. The final value of the
plateau of the normalized distance depends on the map.
It is only in the short time limit, for times of the order of
the microscopic time, that any difference can be seen. In
fact in this regime, an exponential growth of the distance
is observed.

We gratefully acknowledge Prof. C. Tsallis for drawing our
attention to the study of this problem and for his very useful
suggestions.
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